Need appliance parts? Call 877-803-7957 now or use the parts search box:

Parts Search

Stay connected with us...

• entries
783
845
• views
2,384,790

Pearls of appliance repair wisdom from the Appliantology Forums

## Using an Oscilloscope to Understand 120 VAC Split-phase Household Power Supplies

Household power supplies in North America use what's called a split-phase system. The transformer on the pole outside the house takes grid power and steps it down to 240 VAC from end to end on the secondary winding. The secondary winding has a center-tap in it which splits this 240 VAC into two 120 VAC voltages from either end to the center tap. This center tap is defined as Neutral and it is tied to Ground in the circuit breaker box inside the home. The two 120 VAC voltages are 180 degrees out of phase with each other and it is this very antiphase relationship that creates the voltage difference of 240 vac between L1 and L2.

There's a lot of disinformation and tech myths out there about 120/240 split-phase household power supplies. You may have even seen videos online claiming that the split phases are in-phase with each other. This is complete hogwash and I prove it to you in this video.

I show the proper phase relationship (180 degrees) between Line 1 to Neutral and Line 2 to Neutral right at the circuit breaker box using an oscilloscope.

I challenge anyone to show differently and to clearly show how you're measuring.

Learn electricity, circuits, and troubleshooting from a proven master with verifiable credentials at the Master Samurai Tech Academy

## Digital Data Communications in Appliances - Samsung Dryer

Most appliances today use computers to control the various appliance functions. Computers talk in logical 1's and 0's which are actually pulses or square waves of voltage that you can see on an oscilloscope or measure with a meter. These pulses are arranged in a specific sequence to transmit and receive information inside the appliance. In this video, the Samurai uses a Samsung dryer to show you what these pulses look like and how to use this information for troubleshooting.

Come with me now on Journey of Total Appliance Enlightenment.

Learn how to troubleshoot appliances like a real technician at http://mastersamuraitech.com

## Replacing the Fuse on the Main Control Board of an LG Refrigerator

This LG refrigerator was DOA- warm inside, no compressor operation, no lights, no nuttin'. Found a blown fuse on the main control board. What took out the fuse: bad board or just a spike on the power line? I show how to check for that.

The fuses on these LG boards are soldered in and not easily replaceable. But a new fuse can be installed and I show how to do that without even having to remove the board, while it's still installed in the refrigerator.

Learn appliance repair at http://mastersamuraitech.com

## Renewing your Professional Appliantologist Membership at Appliantology.org

This short little screencast by @Son of Samurai shows you how to renew your Professional Appliantologist membership at Appliantology.org so you can continue to enjoy the many benefits the site provides to professional appliance repair technicians.

## Master Samurai Tech Radio Episode 18 [Special Guest]

Introducing the mysterious Son of Samurai (yes, the actual spawn of Samurai), the man behind the scenes running Appliantology.org and MasterSamuraiTech.com. He's also a certified Master Samurai Tech and the Samurai's service call partner. In this episode we talked about:

- Son of Samurai, who he is and what he does to keep our websites running
- Behind the scenes at Appliantology
- Common user questions at Appliantology
- What it takes to be a professional appliance repair technician today
- Getting the most out of your Professional Appliantologist membership at Appliantology.org

Subscribe to this podcast at http://mstradio.com
Subscribe to our newsletter at http://mst.buzz

## Master Samurai Tech Radio Episode 17

Special 4th of July episode:

- Industry News: Haeir buys GE Appliances; new Wolf induction cooktop; Italian appliance manufacturer, SMEG, gaining market share
- Firing your customer; identifying and harpooning "land sharks." Link to article discussed in the vodcast: https://www.groovehq.com/support/how-to-fire-a-bad-customer
- Current thinking on responding to negative reviews
- Dealing with unreasonable customers
- Master Samurai Tech news

Subscribe to the podcast on iTunes or Android and listen to past episodes at http://mstradio.com

Subscribe to our newsletter at http://mst.buzz

## Why do antiphase sine waves cancel each other out in a sound mixer but not in a center-tapped transformer?

This is an excerpt of the full split-phase household power supply webinar held on June 6, 2016. In this excerpt, I explain why antiphase sine waves (meaning 180 degrees out of phase with each other) cancel each other out in a sound mixer but not in a center tapped transformer. Just because an AC voltage can be represented or modeled as a sine wave does not mean all sine waves behave the same way everywhere regardless of the device-- you have to know what you're measuring!

References:

## The Chatroom Diaries, June 9, 2016: Carbon Monoxide and Samsung Washer Door Lock Problem

Had some great conversations in the Appliantology Chatroom today!

First, had a very interesting conversation with Brother smee about carbon monoxide, measurements, standards, production and health effects. We pulled up this excellent training presentation from GE, that demystified a lot of the confusion about CO, and looked at it together:

Might make a good topic for a future Office Hours.

Next, had a good conversation with Mr.Pro-- to be continued-- as we tracked down a DE1 error code on a Samsung washer he was working on. We thought we were looking at the same Fast Track but turns out not to be the case. The correct Fast Track for his model is this one:

Probably shoulda taken that one to a Join.me webinar to make sure we were on the same page. Anyway, we at least established that much! We'll nail the rest of it down in a later chat.

Okay, until next time-- drink beer, sleep well, get shit fixed (in that order).

Hare Krishna.

## What's Your Sine? How Sine Waves are used on Oscilloscopes to Represent the Real World

Introduction

Some people say that a technician is only as good as his test instruments. I strongly disagree! In fact, just the opposite is true: a test instrument is only as good as the technician using it.

You can have the best, most expensive, fanciest test instruments in the world, but if you don’t know how to interpret what that instrument is telling you, what good does it do you?

Some techs are using an oscilloscope in appliance repair. Now, I’m all into cool toys but I don’t think we’re at the point in appliance repair where an o-scope is needed just yet. But they are definitely fun to play with!

Properly understood, an oscilloscope can give a skilled tech great insight into what’s going on with a circuit or whatever else you’re measuring, such as sound waves. O-scopes are great for showing different types and shapes of waveforms, including sine waves, chasing signals through a circuit, comparing the timing of two different data trains in digital circuits and lots of other applications. Their real strength is in repairing electronic circuit boards and are often used with a signal generator where a generated signal is injected into a circuit and then inspected at various points in the circuit with an o-scope to troubleshoot a particular problem.

O-scopes can show other things besides voltages such as electronic representations of sound waves. But unless you understand some basics about both sine waves and the physics of what you're looking at with the o-scope, you could draw some blatantly incorrect conclusions. Let's start with sine waves, what they are and what they are not.

Sine Waves: Mathematical Models of the Real World

A sine wave is a mathematical curve that describes a smooth repetitive oscillation. It is named after the trigonometric sine function. You've probably seen a sine wave many times, it looks like this:

All sine waves have common properties such as amplitude, period, and frequency. These are used to quantify (put numbers on) the physical process being analyzed or studied.

The period is the amount of time it takes for the sine wave to complete one full cycle, its units are time, could be seconds (or some fraction thereof), days, hours, years... depends on what you're modeling. The frequency is the number of of complete cycles completed per unit time, such as 60 cycles per second, also called Hertz (Hz). The amplitude also depends on what you're measuring and the instrument you're using to measure it (more on this later)-- could be volts, decibels, pressure, force, etc.

Sine waves are useful because lots of different physical oscillation processes can be represented by them. Examples are an oscillating spring, AC voltages, ocean waves, planetary rotation, sound waves, light waves, and many others. But the important thing to keep in mind is that in every case, a sine wave is only a mathematical model of some physical reality but is NOT the physical thing itself!

The other thing to keep in mind is that a sine wave is not to be confused with wave physics.

Wave physics is a branch of classical mechanics physics that describes processes that exist as waves in the physical world. A wave is an oscillation (that means is moves back and forth, up and down, you get the idea) of a mass that transfers energy as it moves through some medium, such as air, water, or some other mass.  Examples are sound, light, ripples on water, etc.

Although physical waves, such as sound waves, are always three dimensional, they can be mathematically represented as a two-dimensional x-y sine wave plot either on paper, a computer (like a spread sheet), or on an o-scope.

But keep in mind that, in every case, this sine wave representation is just that: a mathematical abstraction of a three-dimensional physical wave phenomena.

But there are lots of other phenomenon in the physical world that do NOT exist as waves-- so wave physics DOES NOT apply-- yet they can still be mathematically represented by sine waves! The most familiar example is AC voltage and current. Since these are not waves, wave physics does not apply. AC voltage and current are explained by the physics of electricity, not wave physics or any other branch of classical mechanics.

Let's look at some examples of the sine wave representations of sound (wave physics) and AC voltage (electrical physics) and compare them.

The Physics of Sound

Sound waves are mechanical vibrations of pressure. They exist in the real world as variations in pressure in a medium such as air. Waves of Increasing pressure are called compression waves; waves of decreasing pressure are called rarefaction waves. These pressure variations produced by the sound source cause movement of the human eardrum and this movement is interpreted by our brains as a sound.

Although sound waves are three dimensional-- they travel outward from the source in all directions-- they can also be represented as a sine wave and plotted on a standard x vs y graph or on a spectrum analyzer or even an o-scope because they have properties of frequency and amplitude. Modeling sound waves as sine waves lets us visualize, quantify, and analyze them.

Although we're using a sine wave to model a vibrating guitar string in the image above, the sound produced by that vibrating guitar string doesn't actually look that way-- the sine wave is only a mathematical model of the pressure variations produced by the sound of the vibrating guitar string.

The wavelength (an actual, physical distance measured in meters) determines the frequency-- the longer the wavelength, the lower the frequency because it takes longer for the sine wave to make a complete cycle. Frequency and wavelength are related by the speed of sound: wavelength = speed of sound / frequency.

The units of the amplitude of the sine wave representing a sound wave would be some units of pressure, such as decibels. The larger the amplitude, the louder the sound being represented by the sine wave.

But some instruments, such as o-scopes, only have the ability to show volts/division on the vertical (amplitude) axis so that's what will be shown on the screen. But knowing that you're actually looking at a sine wave representation of sound, you would interpret this as a relative index of loudness. This is analogous to the temperature controls on some refrigerators where they only give you a number, such as 1 through 9. The number on the dial, such as "7" doesn't correspond to any actual temperature (as many customers think), it's just an index so you can distinguish one setting from another.  Although the sine wave produced by a sound mixer or signal generator actually does have a voltage amplitude, this is to be understood as a substitute for actual sound "loudness," which is measured in units of pressure (most commonly, decibels). For this very reason, some instruments used in sound analysis, such as spectrum analyzers, only show a relative index for amplitude:

The important take-away point here is that the image being shown on the sine wave graph, such as on an o-scope or spectrum analyzer, is just a model-- an abstraction-- of the actual physical phenomena being shown. So those sine wave models of a sound wave must be interpreted and understood in the context of the actual physics of the phenomena producing the image on the screen.

Note that the waveform graph is two-dimensional but in the real world sound waves are three-dimensional. This graph is exactly how a pure-frequency sound wave would be generated by a sound mixer board and depicted on an o-scope or spectrum analyzer.

The graph indicates a wave traveling along a path from left to right, but real sound waves travel in an expanding sphere from the source. However the 2-dimensional model works fairly well when thinking about how sound travels from one place to another. But, again, the o-scope is just showing you a model, or abstract representation, of the actual, physical sound propagation.

Alright, so we have an idea of some of the physics involved in sound propagation. Let’s explore the question of how sound waves can cancel each other out in the air.

Recall that sound is composed of mechanical compression waves moving through some medium, such as air. That means the wave first compresses to an amount greater than normal air pressure. A sine wave model of this sound would show this as the positive part of the sine wave curve. Then the air expands to a pressure less than normal air pressure. This is the negative part of the sine wave—the part below the zero centerline.

If you have two sounds waves of the exact same frequency and amplitude (volume) but 180 degrees out of phase (one of them is inverted) then one of the sound waves is compressing (higher pressure) at the exact same time the other sound wave is decompressing (lower pressure). Adding the positive pressure from one sound wave and negative pressure from the other sound wave will give you the normal air pressure. The two pressures are cancelling each other out because the air is being decompressed at the exact same time it is being compressed. Since there is no variation in air pressure, there is no sound. This process is called destructive interference and is a basic principle of wave physics

On a sine wave model of the two sound waves, you would see them as two sine waves 180 degrees out if phase with each other, like this:

So how can sound waves be displayed on an o-scope? A common method is to use a sound mixer board. A sound mixer is a device that mixes sounds from different sources.  Some mixers can also be used to generate sounds of various frequencies. Sound mixers electronically (digitally) reproduce the wave physics of sound. They do this using SUMMING amplifiers that ADD the voltages of the sound frequencies together. It is the electronically manipulated output of a specific type of circuit designed to mimic the physics of sound. This is why they are called sound mixers, not voltage mixers.

So when you use a sound mixer to produce two antiphase sine waves representing sound frequencies, as shown in the photo above,  the resulting waveform is seen as a flat line on an o-scope or spectrum analyzer. The sound mixer is doing exactly what it was designed to do: mathematically and electronically produce what you would actually hear in the air (nothing) using good ol' wave physics calculations. Ain't science and technology cool?

From Sound to Voltage

But voltage is not sound! The electronically-manipulated signals from the output of a SUMMING amplifier in a sound mixer has nothing to do with the output of a center-tapped transformer. None of the mechanical wave physics in the foregoing discussion applies to voltage. So things like interference waves, destructive interference, compression, and rarefaction do not apply when you're talking about electricity.

Although sound waves that are 180 degrees out of phase cancel each other in a process called destructive interference, AC voltage is NOT a mechanical wave phenomenon and is not explained by the mechanical wave physics. Yet AC voltage can, and often is, modeled or represented by a sine wave.

To say that because inverted sound waves cancel other out through destructive interference so therefore AC voltage must also behave the same way simply because both can be represented as sine waves is absurd. This would be like saying that because ocean waves can be represented by sine waves, that voltage behaves the same as ocean waves. It's utter balderdash! While this makes for great comedy, it's completely wrong physics.  Same sine wave model, different physics. Get it?

The Physics of Voltage

Let’s start by thinking about what voltage is. Voltage is the difference in electric potential energy, in joules, per unit charge, in coulombs, between two points. So a volt is joule/coulomb. There is no type of compression or rarefaction (decompression) happening in electricity.

We never talk about voltage at a single point, it is always relative to some other point, a "reference point", be it ground, Neutral, L2, whatever. For example, there is no absolute 100 volts “out there” somewhere. It is 100 volts relative to some reference point. By convention, we arbitrarily assign a voltage of 0 volts to the earth and all other voltage measurements on planet Earth are relative to this reference.

Electrons, the negatively charged subatomic particles that comprise current flow, are driven by the difference in voltage between two points. It doesn’t matter if one voltage is negative and one positive, both positive, or both negative as long as there is a voltage difference.

As an example, let’s suppose that point A had a steady voltage of +1,000,000 volts and point B also had a steady voltage of +1,000,000 volts. Since both voltages are the same scalar quantity (1,000,000) and polarity (both positive), there is no voltage difference between the two points so no electrons would flow between A and B (or vice versa). The simplified math looks like this:

+1,000,000 volts - (+1,000,000 volts) = 0 volts

Now let’s suppose the voltage at point B is reduced to +500,000 volts. The voltage difference between A and B becomes:

+1,000,000 volts - (+500,000 volts) = 500,000 volts

Since point A is more positive than point B (conversely, you could also say that point B is more negative than point A) the electron flow is from point B to point A.

Now let’s say that point A stays at +1,000,000 volts but point B goes to -1,000,000 volts, the exact same amount of voltage but opposite polarity. Since we’re talking about DC voltage here (i.e., the polarities are fixed over time) we can’t properly talk about phase yet but this would be a DC equivalent, if you will, of two AC voltages being 180 degrees out of phase. Let’s look at the voltage difference between A and B now:

+1,000,000 volts - (-1,000,000 volts) = 2,000,000 volts

The potential difference (or voltage difference, same thing) between A and B quadruples because you’re subtracting a negative voltage. Four times as many electrons are doing all they can to get from point B to point A in this case compared to the case where the voltage difference was only 500,000 volts.

When we deal with AC voltages, the polarities are constantly reversing 120 times a second, twice in each 1/60th of a second cycle. So the same principles we just looked at with the DC examples above would also apply to AC. But with AC, since the voltage polarities are reversing 120 times a second, we have to consider time in our calculations. This is done by referencing the phase of the voltages between two points which is done using either polar or rectangular notation.

Most people, including many techs, assume that single phase means that both 120vac legs in residential application are of the same phase.  This is a complete misconception. If the two 120vac legs were in phase, the voltage difference between the two would never change, giving no voltage difference between each hot leg:

Note that as the vertical line between the sine waves moves from left to right (the horizontal axis represents the passage of time) on the graph, it's "length," representing the voltage difference, never varies so we have no potential difference between the two points (0vac). If this were the incoming power supply to a home, you could never have a 240vac outlet across L1 and L2.

Run the numbers yourself:

Start with the blue segment where each sine wave is at a maximum +120 vac. What's the voltage difference between these two points? +120 vac - (+120 vac) = 0 vac. The voltage difference (or potential difference, same thing) between the two waveforms is zero.

Now go to the red segment where each sine wave is at a maximum - 120 vac. What's the difference now? -120 vac - (120 vac) = 0 vac.

And so on for every point along the two curves, you get the idea. Here again, just a little bit of mathematical literacy let's you see how obvious this is.

Voltage difference is exactly like the name says: the mathematical difference in electrical potential between two points. That means subtracting. When you subtract a positive number from a positive number, the answer (called the difference) gets smaller. When you subtract a negative number from a positive number, the answer gets bigger. I hesitated to even explain this elementary school math but, sadly, it seems to elude many people, even techs, who should know better.

In the step-down transformers used to supply residential single-phase power in North America, the secondary winding of that transformer is center-tapped. The end-to-end voltage on the secondary is 240 VAC. The center-tap on the secondary is the definition of the Neutral wire in household AC power supply systems and it causes two voltages to develop from either end to the center tap, as shown in this diagram:

Since the secondary winding is center-tapped, two voltages are developed across each split from either L1 or L2 to Neutral (the center-tap) as shown above. Since the center-tapped Neutral is tied to Ground, the electrical polarity at Neutral never changes-- it is always at Ground potential. However, the electrical polarity at each end of the transformer is changing 120 times a second with reference to Neutral.

Now, let's take a closer look at those voltages being developed across the secondary of the transformer:

These two voltages are 180º out of phase as shown in this diagram:

This phase relationship between these two voltages can be expressed using phase notation as shown below:

An o-scope, properly configured, would show the two center-tapped voltages as sine waves 180 degrees out of phase with each other. The resultant wave from combining the two waveforms would have an amplitude that is double of either the voltage at A or B.

Watch me demonstrate this in action:

These two voltages can be mathematically combined using either polar or rectangular math. You can do this long-hand as shown below:

In the special case when voltage sine waves of the same frequency are antiphase (another way of saying "180 degrees out of phase with each other"), you can tell the voltage difference between them at any point by using simple arithmetic. But what about when two voltages are only 120 degrees out of phase with each other, such as in three-phase voltage? Again, you have to use polar or rectangular math to calculate the voltage difference between the two lines at any given point in time. Most engineering calculators will have polar and rectangular functions built into them to facilitate these calculations.

Why should math matter? Why isn't this all just a matter of opinion, preference, or "alternative views?" Because if electricity could not be 100% described by mathematics, none of these systems could be designed in the first place.

How do you think engineers design these systems? Do they guess and hope to get lucky? Do they go with how they're feeling that day? Is it all a matter of how they "believe" these systems work or their "opinion" about how they might work? I guarantee you that they have all this stuff completely nailed down with calculations and they know exactly how the system will behave before the first dollar is committed to building it. That's the essence of what engineers do.

Here again, the abstraction being shown on the o-scope has to be interpreted with an understanding of the physics of the phenomena being viewed, whether sound or voltage.

Summary

- Sine waves are a useful mathematical model used to abstractly represent a wide range of very different physical phenomenon. But the sine wave is not the thing itself-- it is just a mathematical model of the thing.

- By modeling various physical phenomenon as sine waves, scientists, engineers, and technicians can analyze how that physical process changes over time.

- Sound waves, spring compression, AC voltage and current are just a few examples of the widely different physical processes that can all be mathematically and conveniently modeled as a sine wave.

- An oscilloscope is an instrument used to measure the time-varying behavior of various oscillating physical functions and represents them as different types of waveforms, including sine waves.

- Sound waves and AC voltage can both be represented as sine waves with all the various properties of sine waves, such as frequency and amplitude, but this is where the similarity ends.

- Widespread mathematical illiteracy among the population today has resulted in a proliferation of gross misconceptions and "tech myths" about how electricity works.

- O-scopes are fun and, in the right hands, can be a powerful analytical tool. But if you don’t understand the underlying physics of what the sine waves (or other types of wave forms) on the scope are representing or even what a sine wave actually is, you won't know how to interpret what you’re seeing or you will just confuse yourself. Worst of all, you could delude yourself into believing something that just isn't true because you don't know what you don't know.

Professionals working in a skilled trade like appliance repair must have the math and science skills to understand the physical phenomena (electricity, mechanics) that they are measuring with their test instruments or even observing with their senses, or else they can easily get fooled by those observations or measurements and waste time and money in their repair work.

The abysmal public school system in Ameedica today may have let you down by not giving you this foundation, but the Samurai's got your back! Between the Master Samurai Tech Academy and pearls of wisdom such as this post here at Appliantology, I'll help get you up to speed. If I could learn this stuff as a punk-ass, snot-nosed 17-year old kid in the Navy, then anyone can with a little effort and someone to guide them along the way.

Learning never stops, even for the Samurai! Keep your mind open and keep studying so you can know what you don't know.

References:

## New FREE Short Course: Appliantology 101 - Your Guide to the Ultimate Appliance Repair Information Tool

The internet has been a game-changer for the appliance repair industry. But it only works for you if you know how to work it!

Information is key. Professional appliance repair techs work on so many brands and models that access to manuals for disassembly info, schematics, and specifications is a big factor in the success of the repair.

And with the increase in computerization of appliances, war-gaming the service call ahead of time has become critical for increasing first-call completes, decreasing reliance on time-wasting and unpredictable tech lines, and increasing customer satisfaction - and yours! And you can’t war game without the info ahead of time.

Back in the old days, we had shelves overflowing with annoying paper copies of manuals, VHS videos to scrub through, and tech lines operators to wait on hold for. Thankfully, those days are over!

Now we have Appliantology: the web’s premier appliance repair tech support site.

Appliantology is rich and deep with resources for the professional tech: repair forums with world-class peer-to-peer tech support, live chat and tech help, service manual downloads for all makes and models, live training webinars, and exclusive tech training videos.

But like any powerful tool, it’s only as useful as your ability to avail yourself of its many treasures.

Some of our professional tech members sign up and only come around every now and then, and then wonder if the membership fee was worth it. It’s disappointing to invest in something and then not really know how to take advantage of it.

The Samurai sheds a tear for every Professional Appliantologist who barely scratches the surface of the site and never sees the power and beauty within!

Others learn how to use the site fully, unleashing Appliantology’s power to amp up their repair mojo, and then ask us how we can offer such an amazing resource at such a low annual fee.

A Professional Appliantologist membership is \$149/year, that's less than \$3 per week.

When you are well-prepared for your jobs, you will not only be more profitable, but you will have more fun doing it. Who doesn’t want that?

To take the free Appliantology 101 short course, all you need is a free registration at Master Samurai Tech which you can get here

If you already have a student account just make sure you are logged in and you’ll see it in your course listings on your login/welcome page.

Take our FREE short course, Appliantology 101, and see how easy it is to get started with the awesome functionality of the site, and then dive deeper into how to really take your work to the next level!

Watch and weep.

## Learn how to troubleshoot appliances like a Master Tech for Memorial Day

Learn the troubleshooting skills you need to repair today's computer-controlled appliances. Increase your earnings with our empowering, comprehensive training. It's all done online, self-paced, and cost-effective. All our courses offer a terrific value with proven results. Use the coupon code MEMORIAL2016 for 10% off any course or course bundle through the end of May. See this page for a description of our course offerings and enroll today: http://mastr.tech/1TVQZkt

## Master the Internet in 30 Minutes or Less!

Wassmatta, Boopie-- got the Don't-know-my-ass-from-that-hole-called-the-Internet Blues? Well, unfurl thy brow and unbunch thy panties, my Internet-bungling friend for the Samurai shall shine the light of wisdom upon thee and make straight thy cyberpaths. And for FREE! Yes, my sweet-- the Internetology Course is our latest electronic offering to the Great Virtual Universe and we bequeath it unto all posterior unto the ages of ages. Amen.

## Webinar Recap: May 23, 2016 Web Meeting

Fantastic web meeting last night with many assembled Brethren! This was one of the weekly web meetings that we have every Monday evening for Professional Appliantologists and Mast Samurai Tech Academy students.

Personally, I think it was the best one yet-- lots of interactivity and discussion about all kinds of different appliance repair topics.  It was a especially great because we had the audio under control so other people besides just me were able to talk. Mrs. Samurai even joined in the conversation and it was kinda-sorta like a live, interactive podcast!

We started off by looking at a schematic and wiring diagram for a GE Cafe duel fuel double oven. The complaint on this was that the warming drawer wasn't heating up at all and neither of the indicator lights for the warming drawer would come on. Using the schematic and wiring diagram, we developed some specific troubleshooting strategies for pinpointing the problem.

We also talked about all kinds of other things, all pertaining to running an appliance repair business and livin' the life of an appliance tech. Some of the other things we talked about are:

- Dealing with Craig's List competition who advertise "no service call fee with repair" and otherwise appealing to bottom-feeder customers

- The Appliantology chatroom, it's currently an underused resource at the site and we talked about using it more, including our plans to use it for live tech help (as well as just chit chat and hoo-ha). I'm generally hanging out in the chatroom most mornings while I'm checking email, answering forum posts, and otherwise takin' care o' bidness. Pop on in and say hey. One of the brethren suggested an informal chat each evening where we would hang out while surfing the web or checking out other parts of the site. Sounds good to me! I'll try to be there when I can but if I'm not, go ahead and get the party started without me.

- Doing schematic markups-- How do I whip out all those schematic markups? Ahh, Grasshoppah, only the Chosen have received this Divine Wisdom.

- We talked about different types of tablet computers and PDF reading apps that people use to carry service manuals and tech sheets with them to service calls.

- PSA vs. USA - which is the better group to belong to? I am personally a member of USA and think it's a great group. I don't have any experience with PSA so couldn't offer anything on that.

- I also announced our latest and greatest offering at Master Samurai Tech: a new, fun, and FREE course on Internetology: Internet Basics for Everyone. Just register (for free) at Master Samurai Tech and take the course right away. It'll probably take you a half hour to do and you'll get a few laughs along the way. If you already have an account at MST, just log in and you'll see the Internetology course on your login/welcome page.

- Finally, we compared Appliantology and Master Samurai Techs. Two different sites with different missions. Appliantology is our tech support site while MST is our tech training site. Although Team Samurai runs both sites, they each use completely different software so membership at one does not transfer to membership at the other.

We talked about other things, too, that I'm probably forgetting. Maybe someone else will comment on tis post and remind us.

Good talk, good talk!

## MST-Appliantology Newsletter, May 23, 2016: HOT Issue!

If you're not getting the MST-Appliantology newsletter, you're missing out on lots of good info on all things appliantological. You can subscribe for free here: http://appliantology.org/announcement/20-newsletter/

We had lots of news in this issue:
- Memorial Day 10% tuition discount for any course or course bundle at Master Samurai Tech through the end of the month.
- New FREE short course at MST on Internetology - Yes, there is life outside of Facebook!
- MST Radio Vodcast Episode 15 - Facetime with the Samurai and Mrs. Samurai
- Circuit Fu - Reviving the lost art of appliance repair
- The Appliantology Live Tech Help Chatroom
- Pearls from Appliantology: forum topics, cool blog posts, hot new tech downloads

Get it now! http://mastr.tech/1WPwJYz

Use this handy QR code to easily share on your phone:

## Circuit Fu - Reviving the Ancient Lost Art of Appliance Repair

Whoo-WEE, things sure have changed in the 20 short years I’ve been doing appliance repair! The appliances themselves have changed from discrete mechanically-controlled machines to computers that do appliance functions. But the level of skill among technicians has changed, too. Somewhere along the way, essential skills like a working knowledge of basic electric circuits and using schematics to develop troubleshooting strategies have gotten scarce. In other words, there’s a critical shortage of Circuit Fu among appliance techs today.

The appliance repair trade is probably worse off than most of the other skilled trades because the apprenticeship programs are practically non-existent, there are not many cost-effective training venues left today, and appliances have become increasingly more complex and computer-controlled. So you’re left with a double-whammy: the technical skills have gone down at precisely the time they’re needed the most as appliances have gotten more complex to troubleshoot.

## Although You May Not Realize It, You Are Technological

Today, science tells us that the essence of nature is freedom. The planet is radiating sonar energy. Serenity is the driver of inseparability.

We are at a crossroads of spacetime and dogma.

The cosmos is calling to you via frequencies. Can you hear it? How should you navigate this unlimited universe? If you have never experienced this source undefined, it can be difficult to exist.

The world is approaching a tipping point. It is a sign of things to come. This journey never ends.

We are in the midst of a life-affirming ennobling of aspiration that will open up the nexus itself. Our conversations with other travellers have led to a summoning of pseudo-ever-present consciousness. Reality has always been full of lifeforms whose bodies are immersed in rejuvenation.

Although you may not realize it, you are technological.

Yes, it is possible to erase the things that can exterminate us, but not without will on our side. You may be ruled by illusion without realizing it. Do not let it shatter the truth of your quest. Pain is the antithesis of healing.

Entity, look within and change yourself. It can be difficult to know where to begin. Have you found your mission?

## Master Samurai Tech Radio Episode 15

Another all-new vodcast episode of Master Samurai Tech Radio! In this killa episode:

- Weekly tech training webinars, aka., Office Hours, for MST Academy students and Professional Appliantologist members here at Appliantology.
- Webinar recordings available for both students and PA members.
- Open Q&A Office Hours- a great time to ask questions about a schematic or tech sheet that you're having troubles understanding.
- Live Tech Help at Appliantology.org!

Subscribe to the podcast on iTunes or Android and listen to past episodes at MSTradio.com

## The Appliantology Live Tech Help Chatroom

Mah Breverens,

As you may know, I hold weekly, live tech training webinars for Master Samurai Tech Academy students and I recently included Professional Appliantologist members here at Appliantology in those those webinars as well. I know, I know-- that was already a 10 on the Awesome Meter® and, just when you thought it wasn't humanly possible to get any more awesome value out of your Professional Appliantologist membership, we've gone and cranked it up to 11 by adding Live Tech Help!

Professional Appliantologist members can access Live Tech Help through the Appliantology Chatroom where you can chat with your brethrens and get live help on an appliance problem you’re working on.

Trouble reading a schematic? Need help figuring out how to troubleshoot an appliance problem you’re currently working on? This is where you can get live help!

Here's how it works:

Like the rest of the site, the Appliantology Chatroom is completely mobile-friendly and works on any desktop computer or device (Android, Windows, and Apple).

Professional Appliantologists can go into the Chatroom at any time. If no one else is there, just hang out and do other stuff while you're waiting for someone else to pop in. When someone else comes in, you'll hear the door bell sound (make sure sound is enabled on your computer or device and in the chatroom-- look for the speaker icon in the chatroom window).

The more PA's who make it a habit to have the chatroom open whenever they are doing other things online, the more help will be given and received there! So come on in and hang for awhile. That's what I do.

Now here's where it goes nuclear. If the Samurai is in the chat room, we can take it to the next level and open a live web meeting or conference call on Join.me. There, we can talk by voice live and real time, and look at the tech sheet and schematic together. Although Join.me will work in any browser, it's best using the Join.me app. If you're on a mobile device, you'll need the app. It's free so go ahead and download it here: https://www.join.me/apps

This is all a free benefit included as part of your Professional Appliantologist membership here at Appliantology.

If you’ve never attended one of our webinars on Join.me, please watch this short video to learn how to connect and control your audio so you’ll be ready to join in when the time comes!

Talk to you soon!

Samurai Appliance Repair Man

## Understanding and Troubleshooting with Bosch Schematic Diagrams

Bosch schematics are notoriously cryptic and look different from the schematics used by other appliance manufacturers. But electricity still works the same way in Germany as it does in Korea, the US, or anywhere else in the known universe. Don't let the unfriendly nature of their schematics fool you into thinking otherwise! Once you understand a few simple conventions used by Bosch, you'll be troubleshooting with Bosch schematics as easily as you use Whirlpool's or any other manufacturer.

In this excerpt from a recent Office Hours webinar, we decoded the schematic for a Bosch dishwasher and used it to troubleshoot various hypothetical problem scenarios. During this webinar, we reviewed five different tech sheets and schematics; this Bosch dishwasher schematic was one of those. Hopefully, this will give you some insight into reading Bosch schematics and using them to troubleshoot.

## Using the Schematic to Troubleshoot a No-Op Problem in a Whirlpool Alpha Platform Front Load Washer

Using a Whirlpool Alpha Platform WFW94HEXW0 front load washer as an example, we're going to use the schematic and that gray muck swirling betwixt our ears to troubleshoot a no run situation in this washer. The scenario is that the display panel lights up, you hear the door lock go THUNK! and lock the door but then... nuttin'.

Learn how to troubleshoot using schematic analysis like a real appliance technician at Master Samurai Tech.

## Happy Orthodox Easter! Christ is Risen!

Today, Orthodox Christians around the world (myself included) celebrate Orthodox Easter (also called Pascha in many traditions). This year was a big offset from Western Easter because of the difference between the Gregorian Calendar used in the West and the Julian Calendar used by Orthodox Christians for calculating the date of Easter. Although the dates are different, it's the same celebration.

The traditional greeting used by the Orthodox during the Paschal Season (from Easter to Pentecost) is "Christ is Risen" and the traditional response is "Indeed he is risen." Here's that same greeting from around the world:

Language    Greeting    Response

Aleut:    Khristus anahgrecum!    Alhecum anahgrecum!
Aleut:    Khris-tusax agla-gikux!    Agangu-lakan agla-gikux!
Albanian:    Krishti U Ngjall!    Vertet U Ngjall!
Alutuq:    Khris-tusaq ung-uixtuq!    Pijii-nuq ung-uixtuq!
Amharic:    Kristos tenestwal!    Bergit tenestwal!
Anglo-Saxon:    Crist aras!    Crist sodhlice aras!
Arabic:    El Messieh kahm!    Hakken kahm!
Armenian:    Kristos haryav ee merelotz!    Orhnial eh harootyunuh kristosee!
Athabascan:    Xristosi banuytashtch'ey!    Gheli banuytashtch'ey!
Bulgarian:    Hristos voskrese!    Vo istina voskrese!
Chinese:    Helisituosi fuhuole!    Queshi fuhuole!
Coptic:    Pchristos aftooun!    Alethos aftooun!
Czech:    Kristus vstal a mrtvych!    Opravdi vstoupil!
Danish:    Kristus er opstanden!    Ja, sandelig opstanden!
Dutch:    Christus is opgestaan!    Ja, hij is waarlijk opgestaan!
English:    Christ is risen!    Indeed He is risen!
Eritrean-Tigre:    Christos tensiou!    Bahake tensiou!
Esperanto:    Kristo levigis!    Vere levigis!
Estonian:    Kristus on oolestoosunt!    Toayestee on oolestoosunt!
Ethiopian:    Christos t'ensah em' muhtan!    Exai' ab-her eokala!
Finnish:    Kristus nousi kuolleista!    Totisesti nousi!
French:    Le Christ est réssuscité!    En verite il est réssuscité!
Gaelic:    Taw creest ereen!    Taw shay ereen guhdyne!
German:    Krist ist auferstanden!    Wahrlich Er ist auferstanden!
Greek:    Christos anesti!    Alithos anesti!
Hawaiian:    Ua ala hou 'o Kristo!    Ua ala 'I 'o no 'oia!
Hebrew:    Ha Masheeha houh quam!    Be emet quam!
Ibo ( Nigeria):    Jesu Kristi ebiliwo!    Ezia o' biliwo!
Indian (Malayalam):    Christu uyirthezhunnettu!    Theerchayayum uyirthezhunnettu!
Indonesian:    Kristus telah bangkit!    Benar dia telah bangkit!
Italian:    Cristo e' risorto!    Veramente e' risorto!
Japanese:    Harisutos Fukkatsu!    Jitsu ni Fukkatsu!
Javanese:    Kristus sampun wungu!    Tuhu sampun wungu!
Korean:    Kristo gesso!    Buhar ha sho nay!
Latin:    Christus resurrexit!    Vere resurrexit!
Latvian:    Kristus ir augsham sales!    Teyasham ir augsham sales vinsch!
Lugandan:    Kristo ajukkide!    Amajim ajukkide!
Norwegian:    Christus er oppstanden!    Sandelig han er oppstanden!
Polish:    Khristus zmartwyckwstal!    Zaprawde zmartwyckwstal!
Portuguese:    Cristo ressuscitou!    Em verdade ressuscitou!
Romanian:    Hristos a inviat!    Adevărat a înviat!
Russian:    Khristos voskrese!    Voistinu voskrese!
Sanskrit:    Kristo'pastitaha!    Satvam upastitaha!
Slovak:    Kristus vstal zmr'tvych!    Skutoc ne vstal!
Swahili:    Kristo amefufukka!    Kweli amefufukka!
Swedish:    Christus ar upstanden!    Han ar verkligen upstanden!
Syriac:    M'shee ho dkom!    Ha koo qam!
Tlingit:    Xristos Kuxwoo-digoot!    Xegaa-kux Kuxwoo-digoot!
Turkish:    Hristos diril - di!    Hakikaten diril - di!
Ugandan:    Kristo ajukkide!    Kweli ajukkide!
Ukrainian:    Khristos voskres!    Voistinu voskres!
Welsh:    Atgyfododd Crist!    Atgyfododd yn wir!
Yupik:    Xris-tusaq Ung-uixtuq!    Iluumun Ung-uixtuq!
Zulu:    Ukristu uvukile!    Uvukile kuphela!

## Master Samurai Tech Radio Episode 14

In this long-awaited episode:
- ASTI 2016 recap and discussion
- Industry news - trends in the evolving appliance repair profession
- Tech training webinars at Appliantology.org and MasterSamuraiTech.com
- Bidness Talk: "Where can I hire good techs?"
- Tool Talk: Information tools for more effective appliance repair service calls

Subscribe to the podcast on iTunes or Android and listen to past episodes at MSTradio.com

## The Future of Appliance Repair - The Internet of Things

You guys have heard me say in webinars and elsewhere that we are going through a paradigm shift in the appliance repair trade. Gone are the days of Buttcrack Bubba. Parts Changing Monkeys are already obsolete and everywhere going out of business-- and good riddance! At the same time, techs who keep learning the new technologies being incorporated into appliances are thriving and have growing businesses.

Appliance techs today have nothing substantive in common with trades thought to be "related"-- home handymen, plumbers, electricians, or HVAC mechanics. The days are now here where we have more in common with computer technicians. You've heard me talk about how troubleshooting today's computer-controlled appliances is no different from troubleshooting any computer, including your desktop computer-- the troubleshooting process is identical.

Now we're kickin' it up a notch as the Internet of Things (IoT) becomes a reality. The IoT refers to the interconnectedness of formerly discreet machines and devices, such as appliances. All the manufacturers are coming out with wifi-enabled appliances.

IoT is not a kitschy marketing fad to sell more appliances. This is an extension of the same pattern we've seen over and over again with appliances- the manufacturers are simply adopting a firmly-established technology trend which will only become more prevalent as the new models come out.

The response of too many appliance servicers is to whine and complain about electronics in appliances.

Word: Get over it. Adapt or die.

The days are soon approaching where a common service call will involve troubleshooting network and wifi connectivity problems with appliances. Are you ready and willing to add computer networking and communications to your repertoire of technical skills?

I think the Pareto principle (the 80-20 rule) applies here as it does to so many other things in life: 80% of current techs will either be late to the ball or fail to adapt altogether while the top 20% in the trade will continue to stay ahead of the curve (that's the statistical bell curve, to which the Pareto Principle refers) and will prosper. Which group will you be in?

We have guys here at Appliantology who don't know how to search, don't check their email inboxes (even after they've sent me an email to which I've replied), don't know what a link is, can't figure out how to log in, can't even get a model number right... where will these guys be in 5 years? Where will you be?

Infographic Source: http://www.pennywell.ie/