Need appliance parts? Call 877-803-7957 now or use the parts search box:

Parts Search

• entries
760
812
• views
2,374,348

# Explanation of 120v single phase, 240v Split Phase, and 208v 3-phase

17,245 views

Here is a clear and simple explanation of understanding the differences between 120v single phase, 240v Split Phase, and 208v 3-phase from Academy Fellow Keinokuorma:

There have been multiple threads discussing this electrical topic. Because of increasing demand of this information, I will try to explain this shortly and comprehensively.

On the background there is the three-phased transmission network. This is wired by three separate wires that normally hang adjacently along rows of poles. The voltage between each wire is 11kV, and the waveform graph drawn for each wire's voltage (and current too) are one third of a cycle off each other. That is, there is a 120 degree phase shift between each live wire's waveform, 360 degrees being one full cycle.

The relatively high voltage for the transmission network is selected, because there are two interesting laws about power. First, by principle, electrical power taken by any load can be calculated by multiplying the current flowing through the load, by the voltage over the load. Second, wattage loss at transfer can be calculated by multiplying the transfer line's resistance, by the square (or second power) of the load current. Therefore, for transmitting the same power, if double voltage is used, half the current is needed, and 75% less power is lost on the trip! Let's just say that if they use 11kV instead of 110V for transfer (100x voltage) they need the hundredth of current, and lose only a ten thousandth of power in transit, compared to the idea that it was 110V all through the Great United States of America. The other choice would be using at least one hundred times thicker wire, which is not reasonable at all.

It is not safe to feed this high voltage directly into households. Instead, the voltage from the transmission network will be stepped down by transformers. The usual layout is that single-home buildings have their own stepdown transformers, and larger residential buildings in big cities may have one or a couple larger transformers.

120V: First off, the standard household voltage in North America is 120V AC, 60Hz. Most appliances are designed for this. There can be some variations in the voltage depending on the load and condition of the network. The stepdown transformer has its primary winding wired between two of the three transmission wires.

Due to growing demand of electrical heating (in dryers, ranges, water heaters and sometimes house interior heating) a system has been required that allows usage of 120V designed electronics, and is capable of providing more power for the household. For the same reason that the transfer network doesn't work with such a low voltage, the single 120V circuit can only give so much power without the power loss becoming astronomical. There are two methods used to avoid this while keeping compatibility.

240V or split phase: For small residential buildings, the usual method is to rig up a 240V stepdown transformer (instead of 120V) in which the secondary winding is split into two 120V windings (hence the name "split phase"). The center tap is then grounded and fed to the house as if it was the neutral wire of the old 120V system, and each end is wired as a separate 120V live wire. Their waveforms have a half-cycle offset, or 180 degrees, when measured against the neutral wire. The normal 120V designed machinery does not care which live wire you use for them as long as you connect them between a live and neutral wire. Appliances in the home can be distributed on either live wire to maintain balanced loading, and when heating requires high power, the concerned appliance can be connected to both live wires to operate the heating element, providing 240V for it.

208V: For larger residential buildings and blocks especially in big cities, as well as shopping malls etc, there is a system made out of two or three phases. In these cases, one or more of full three phase stepdown transformers are used to feed power to the building. These transformers have three primary windings, each wired between two of the transmission wires, in a triangular fashion. There are also three secondary windings on such a transformer. Normally these are coupled at one end, the center tap is grounded and fed into the house as the neutral wire, while their other ends are fed into the house as separate live wires. Each live wire reads 120V against the neutral point, and between any pair of live wires, you get the reading of 208V. Then, each home in the building is fed with two or three of these live wires as well as the neutral. The rest happens much like on the split phase. Appliances can be distributed on different live wires, and heating elements will be connected between two live wires.

Now, mostly the differences the customer is concerned with, are just that appliances with 240V designed elements will produce 25% less heat on a 208V system. Some appliances are produced in two models designed for the two systems, some are produced in one model designed for 240V with the power reduction noted in the manual, and some are produced in one model with 208V designed elements as optional spare parts.

If you operate a 240V designed device on a 208V system, often you will not notice much retardation in the performance. It WILL cause your oven, stove or dryer to reach selected temperature slower, and the thermostat will therefore cycle on for longer periods. However, total energy consumption is not greatly affected.

Be aware that mismatching a 208V designed device into a 240V system will cause the element(s) to produce 33% more heat than they are designed for. This will greatly shorten their life span and may cause fire hazard. Temperature in the oven, stove or dryer will probably fluctuate more than what is desirable, and the thermostat will cycle on for short periods. Especially in the case of the dryer, the risk of fire hazard is high.

I will add more pictures when I have drawn some decent ones. Meanwhile, here is a haphazard hand sketch.

• ### Blog Entries

• Lab Night 3, High voltage machine
Cool rig!  As for the difference in current draw between the probe the ladder, you were seeing the extra current draw in the ladder as the arc! The stepped up voltage created enough potential difference for the electrons to actually jump that gap (with a starter nudge from the probe). Once the probe introduced an arc, the arc itself established a current path for the electrons to jump the two legs of the ladder and they could keep flowing back and forth as the arc travelled up the ladder.
• Whirlpool Drain (or if Prince was an Appliantologist)
An opus magnum Appliantological send-off for one of rock's magic-hands superstars! Fantastic, Brother Durham!
• Applyricology, Best of Durham Music Vol 1
so Everybodys posting with the Samurai Everybody here is out of sight We dont bark and we dont bite We keep things loose, we keep things lite so Everybody's posting with the Samurai Posting with the Samurai Appliantology makes us smart and bright It's such a fine and useful site so Everybody's posting with the Samurai We like our fun and we never fight you cant post here and stay uptight Your stove won't heat? Check out this site so everybody's posting with the Samurai Posting with the Samurai Appliantology makes us smart and bright Your washer's broke? We'll make it right So Everybody's posting with the Samurai [time to pull out that air guitar and solo!] Everybody here is out of sight We dont bark and we dont bite Fridge too warm? So log on tonight where Everybody's posting with the Samurai Posting with the Samurai Appliantology makes us smart and bright It's such a fine and useful site so Everybody's posting with the Samurai [repeat last verse a few times, ad lib, moan a bit then fade]           We all want to grow our companies,  but finding and keeping either qualified techs or finding anyone that posseses even the slightest work ethic is a difficult,  near impossible task.  This song laments this sad state of affairs but also is a tribute to the recent passing of one of the greats.  Whirlpool Drain (or if Prince was an Appliantologist looking for good help)  Maybe you never meant to cause me any sorrow
Maybe you never meant to cause me any pain
I only wanted to one time see you working
I only wanted to see you
working on a Whirlpool Drain Whirlpool Drain, Whirlpool Drain
Whirlpool Drain, Whirlpool Drain
Whirlpool Drain, Whirlpool Drain
I only wanted to see you
Steaming up a Whirlpool Drain  I never wanted to be a hard-assed employer
But neither could I be some kind of friend
Now please go away,  go work for another
For your employment with me has end Whirlpool Drain, Whirlpool Drain
Whirlpool Drain, Whirlpool Drain
Whirlpool Drain, Whirlpool Drain
I only wanted to see you
Underneath a Whirlpool Drain Dude, I know, I know
I know  appliances are changing
It's time we all reach out
to learn something new, that means you too You say you want me to teach you
But you can't seem to make up your mind
So I think you better pack it
Since you can't even Ptrap a Whirlpool Drain Whirlpool Drain, Whirlpool Drain
Whirlpool Drain, Whirlpool Drain
Service Owners, if know what I'm singing about up here
C'mon, raise your hand Whirlpool Drain, Whirlpool Drain
I only want to have one
Only want to see one
Working on a Whirlpool Drain
How Deep is Your Lint? or Dyer Fire ie Bee Gees as Appliantologists

I believe that you
Don't want your doors to be charcoal
Or see the light from a fire in the darkest hour
Nor want your house to fall
And you may not think we care for you
When you know down inside
That we really do

Then it's time for you to show