Jump to content
Click here to check out this guide

FAQs | Repair Videos | Academy | Newsletter | Contact


  • Upcoming Events

    • 28 September 2024 02:00 PM Until 03:00 PM
      0  
      All Appliantology tech members are invited to join in the conversation for all things Appliantological: bidness, customers, tools, troubleshooting, flavorite brewski, whatever. Webcams and microphones are open and live!
      This event is also a great time for any students at Master Samurai Tech to bring any and all questions about the coursework. We're happy to walk through any concepts you're having trouble with. Think of it like office hours with your teachers. 
      Also, follow the Calendar Event so you'll get notified of new posts here. Look for the "Follow" button either at the top of the topic on desktop or below the topic on mobile.
      Who: This workshop is only available to tech members at Appliantology.
      When: Saturday, September 28 @10:00 AM Eastern Time.
      Where: Online via Zoom
      How:
      Click here to go to the forum topic with the registration link. If you're interested, register now. Arrive a couple minutes early to make sure your connection is working. Set a reminder for yourself for this workshop so you don’t miss it.  And check out past workshops here: https://appliantology.org/announcement/33-webinar-recordings-index-page/

New Appliance Service Manual added: Comparison of Cooling Parameters of R134a and R290/R600a


Samurai Appliance Repair Man

Recommended Posts

  • Team Samurai

Comparison of Cooling Parameters of R134a and R290/R600a

View File

Abstract: Cooling capacities and other parameters were determined for a refrigeration cycle operating between temperature limits of -25oC (evaporator temperature) and 42oC (condenser temperature). The refrigerants used in the refrigeration cycle analysis were R134a and R290/R600a. Compressor capacity of 125W, degree of subcooling of 9K and degree of superheating of 15K were maintained for refrigeration cycles using R134a and a binary mixture of R290/R600a (50% each by mass). Parameters such as refrigerating capacity, mass flow rate, compression work, condenser capacity and Coefficient Of Performance (COP) were computed for each refrigeration cycle. Flow rate of R134a is higher than that of R290/R600a which indicates its low evaporative specific heat. The cooling capacity of R134a (376.41W) is higher than that of R290/R600a (338.11W). COP of the cycle using R134a is 3.01 which is higher than that of R290/R600a. Suction and discharge pressures of the two refrigerants are fairly close. The analysis showed that cooling capacities of the two refrigerants are close enough and are therefore proposed as substitutes in existing R12 refrigeration systems.

Keywords: Refrigeration Cycle, R134a, R290/R600a, Cooling Capacities, Binary Refrigerants


 

Link to comment
Share on other sites

  • Replies 0
  • Created
  • Last Reply

Top Posters In This Topic

  • Samurai Appliance Repair Man

    1

Popular Days

Top Posters In This Topic

Popular Days


×
×
  • Create New...